Conference/journal papers, and under review preprints
-
On Convolutions, Intrinsic Dimension, and Diffusion Models
KK Leung, R Hosseinzadeh, G Loaiza-Ganem
arXiv preprint 2025
-
Textual Bayes: Quantifying Uncertainty in LLM-Based Systems
BL Ross*, N Vouitsis*, AA Ghomi, R Hosseinzadeh, J Xin, Z Liu, Y Sui, S Hui, KK Leung, G Loaiza-Ganem, JC Cresswell
arXiv preprint 2025
-
A Geometric Framework for Understanding Memorization in Generative Models
BL Ross, H Kamkari, T Wu, R Hosseinzadeh, Z Liu, G Stein, JC Cresswell, G Loaiza-Ganem
ICLR 2025 (spotlight) [code]
-
CaloChallenge 2022: A Community Challenge for Fast Calorimeter Simulation
C Krause et al.
arXiv preprint 2024
-
A Geometric View of Data Complexity: Efficient Local Intrinsic Dimension Estimation with Diffusion Models
H Kamkari, BL Ross, R Hosseinzadeh, JC Cresswell, G Loaiza-Ganem
NeurIPS 2024 (spotlight) [code]
-
Deep Generative Models through the Lens of the Manifold Hypothesis: A Survey and New Connections
G Loaiza-Ganem, BL Ross, R Hosseinzadeh, AL Caterini, JC Cresswell
TMLR 2024 (survey certification, expert certification) [code]
-
A Geometric Explanation of the Likelihood OOD Detection Paradox
H Kamkari, BL Ross, JC Cresswell, AL Caterini, RG Krishnan, G Loaiza-Ganem
ICML 2024 [code]
-
Data-Efficient Multimodal Fusion on a Single GPU
N Vouitsis*, Z Liu*, SK Gorti*, V Villecroze, JC Cresswell, G Yu, G Loaiza-Ganem, M Volkovs
CVPR 2024 (highlight) [code]
-
Neural Implicit Manifold Learning for Topology-Aware Density Estimation
BL Ross, G Loaiza-Ganem, AL Caterini, JC Cresswell
TMLR 2023 (expert certification) [code]
-
Exposing flaws of generative model evaluation metrics and their unfair treatment of diffusion models
G Stein, JC Cresswell, R Hosseinzadeh, Y Sui, BL Ross, V Villecroze, Z Liu, AL Caterini*, JET Taylor*, G Loaiza-Ganem*
NeurIPS 2023 [code]
-
TR0N: Translator Networks for 0-Shot Plug-and-Play Conditional Generation
Z Liu*, N Vouitsis*, SK Gorti, J Ba, G Loaiza-Ganem
ICML 2023 [code][demo]
-
Verifying the Union of Manifolds Hypothesis for Image Data
BCA Brown, AL Caterini, BL Ross, JC Cresswell, G Loaiza-Ganem
ICLR 2023 [code]
-
Diagnosing and Fixing Manifolds Overfitting in Deep Generative Models
G Loaiza-Ganem, BL Ross, JC Cresswell, AL Caterini
TMLR 2022 (expert certification) [code]
-
Bayesian Nonparametrics for Offline Skill Discovery
V Villecroze, HJ Braviner, P Naderian, CJ Maddison, G Loaiza-Ganem
ICML 2022 [code]
-
Rectangular Flows for Manifold Learning
AL Caterini*, G Loaiza-Ganem*, G Pleiss, JP Cunningham
NeurIPS 2021 [code]
-
C-Learning: Horizon-Aware Cumulative Accessibility Estimation
P Naderian, G Loaiza-Ganem, HJ Braviner, AL Caterini, JC Cresswell, T Li, A Garg
ICLR 2021 [code]
-
Invertible Gaussian Reparameterization Trick: Revisiting the Gumbel-Softmax
A Potapczynski, G Loaiza-Ganem, JP Cunningham
NeurIPS 2020 [code]
-
The Continuous Categorical: A Novel Simplex-Valued Exponential Family
E Gordon-Rodriguez, G Loaiza-Ganem, JP Cunningham
ICML 2020 [code]
-
The continuous Bernoulli: fixing a pervasive error in variational autoencoders
G Loaiza-Ganem, JP Cunningham
NeurIPS 2019 [code]
-
Deep Random Splines for Point Process Intensity Estimation of Neural Population Data
G Loaiza-Ganem, SM Perkins, KE Schroeder, MM Churchland, JP Cunningham
NeurIPS 2019 [code]
-
Maximum Entropy Flow Networks
G Loaiza-Ganem*, Y Gao*, JP Cunningham
ICLR 2017 [code]
Workshop papers, abstracts, and arXiv-only preprints
-
Last Layer Empirical Bayes
V Villecroze, Y Wang, G Loaiza-Ganem
ICLR 2025 ICBINB workshop [code]
-
Deep Ensembles Secretly Perform Empirical Bayes
G Loaiza-Ganem, V Villecroze, Y Wang
arXiv preprint 2025
-
Inconsistencies In Consistency Models: Better ODE Solving Does Not Imply Better Samples
N Vouitsis, R Hosseinzadeh, BL Ross, V Villecroze, SK Gorti, JC Cresswell, G Loaiza-Ganem
NeurIPS 2024 ATTRIB workshop [code]
-
Inconsistencies In Consistency Models: Better ODE Solving Does Not Imply Better Samples
N Vouitsis, R Hosseinzadeh, BL Ross, V Villecroze, SK Gorti, JC Cresswell, G Loaiza-Ganem
NeurIPS 2024 FITML workshop [code]
-
A Geometric View of Data Complexity: Efficient Local Intrinsic Dimension Estimation with Diffusion Models
H Kamkari, BL Ross, R Hosseinzadeh, JC Cresswell, G Loaiza-Ganem
ICML 2024 SPIGM workshop (oral) [code]
-
Differentiable Local Intrinsic Dimension Estimation with Diffusion Models
H Kamkari, BL Ross, R Hosseinzadeh, JC Cresswell, G Loaiza-Ganem
ICML 2024 DAE workshop (oral) [code]
-
Scalable Local Intrinsic Dimension Estimation with Diffusion Models
H Kamkari, BL Ross, R Hosseinzadeh, JC Cresswell, G Loaiza-Ganem
ICML 2024 GRaM workshop [code]
-
A Geometric Framework for Understanding Memorization in Generative Models
BL Ross, H Kamkari, Z Liu, T Wu, G Stein, G Loaiza-Ganem, JC Cresswell
ICML 2024 GRaM workshop [code]
-
A Geometric Framework for Understanding Memorization in Generative Models
BL Ross, H Kamkari, Z Liu, T Wu, G Stein, G Loaiza-Ganem, JC Cresswell
ICML 2024 NextGenAISafety workshop [code]
-
A Geometric Explanation of the Likelihood Out-of-Distribution Detection Paradox
H Kamkari, BL Ross, JC Cresswell, AL Caterini, RG Krishnan, G Loaiza-Ganem
ICLR 2024 GenAI4DM workshop [code]
-
Denoising Deep Generative Models
G Loaiza-Ganem, BL Ross, L Wu, JP Cunningham, JC Cresswell, AL Caterini
NeurIPS 2022 ICBINB workshop (spotlight) [code]
-
The Union of Manifolds Hypothesis
BCA Brown, AL Caterini, BL Ross, JC Cresswell, G Loaiza-Ganem
NeurIPS 2022 SGNR workshop [code]
-
Relating Regularization and Generalization through the Intrinsic Dimension of Activations
BCA Brown, J Juravsky, AL Caterini, G Loaiza-Ganem
NeurIPS 2022 OPT workshop
-
Relating Regularization and Generalization through the Intrinsic Dimension of Activations
BCA Brown, J Juravsky, AL Caterini, G Loaiza-Ganem
NeurIPS 2022 HITY workshop
-
CaloMan: Fast generation of calorimeter showers with density estimation on learned manifolds
JC Cresswell, BL Ross, G Loaiza-Ganem, H Reyes-Gonzalez, M Letizia, AL Caterini
NeurIPS 2022 ML4PS workshop [code]
-
CaloMan: Fast generation of calorimeter showers with density estimation on learned manifolds
JC Cresswell, BL Ross, G Loaiza-Ganem, H Reyes-Gonzalez, M Letizia, AL Caterini
ML4Jets 2022 [code]
-
On a novel probability distribution for zero-laden compositional data
E Gordon-Rodriguez, G Loaiza-Ganem, JP Cunningham
CoDaWork 2022 (oral)
-
Neural Implicit Manifold Learning for Topology-Aware Generative Modelling
BL Ross, G Loaiza-Ganem, AL Caterini, JC Cresswell
ICML 2022 TAG workshop [code]
-
On the Normalizing Constant of the Continuous Categorical Distribution
E Gordon-Rodriguez*, G Loaiza-Ganem*, A Potapczynski, JP Cunningham
arXiv preprint 2022 [code]
-
Entropic Issues in Likelihood-Based OOD Detection
AL Caterini, G Loaiza-Ganem
NeurIPS 2021 ICBINB worshop (spotlight)
-
Rectangular Flows for Manifold Learning
AL Caterini*, G Loaiza-Ganem*, G Pleiss, JP Cunningham
ICML 2021 INNF workshop (spotlight) [code]
-
C-Learning: Horizon-Aware Cumulative Accessibility Estimation
P Naderian, G Loaiza-Ganem, HJ Braviner, AL Caterini, JC Cresswell, T Li, A Garg
NeurIPS 2020 DRL workshop [code]
-
Uses and Abuses of the Cross-Entropy Loss: Case Studies in Modern Deep Learning
E Gordon-Rodriguez, G Loaiza-Ganem, G Pleiss, JP Cunningham
NeurIPS 2020 ICBINB workshop (oral) [code]
-
Deep Random Splines for Point Process Intensity Estimation
G Loaiza-Ganem, JP Cunningham
ICLR 2019 DeepGenStruct workshop [code]
-
Latent structure in populations of truly continuous spike trains: inference with deep random splines
G Loaiza-Ganem, JP Cunningham
Cosyne 2019